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Abstract

The recent record-setting performance of the Fermilab Tevatron is the culmination of a long
series of efforts to optimize the many parameters that go into generating integrated luminosity
for the colliding beams experiments. The instantaneous luminosity is a function of the number of
particles of each particle species, the physical extent at the collision point of the transverse and
longitudinal particle distributions, and the bunch collision frequency. Meanwhile, the integrated
luminosity also depends upon the rate at which particles are lost due to collisions or other means,
as well as the rate at which the initial store luminosity can be restored after the end – intentional
or otherwise – of the previous store. While many numerical computer models already exist that
are used to help optimize the performance of the Tevatron complex, here we take an analytical
approach in an attempt to illustrate the most fundamental aspects of integrating luminosity in
the Tevatron. We find that the essential features, including recent values of the weekly integrated
luminosity, can be understood in a transparent way from basic operational parameters such as
antiproton stacking rate and beam emittance growth rate in the Tevatron.

1 INTRODUCTION

We will build up our understanding in stages. First, we look at the condition where a collider uses
two beams with equal bunch intensities, and where particles are lost from the accelerator only due
to collisions. Next, we allow the two beams under these same conditions to have different average
bunch intensities. And lastly, we introduce a beam lifetime which is independent of luminosity (for
example, beam growth due to noise sources) to arrive at a more realistic model.

To begin we consider the case where particles of two equally populated, counter-rotating beams
of a collider are lost only due to collisions with each other. For such a “perfect store,” given enough
time, the delivered integrated luminosity I0 must be equal to the number of particles “consumed”
divided by the interaction cross section; the luminosity delivered to each experiment would be this
number divided by the number of experiments. For a collider with equal number of bunches in each
beam, and equal bunch populations, the ultimate integrated luminosity for the store delivered to
each experiment would be

I0 =
Ntotal

nΣ
=

BN0

nΣ
, (1)
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where B is the number of bunches per beam, N0 is the initial number of particles per bunch, n is
the number of interaction points, and Σ is the interaction cross section. This is the maximum total
integrated luminosity one could hope for from a single store.

1.1 Equal bunch intensities

To arrive at the above conclusion analytically, consider the ideal case of a collider with equal bunch
populations in each beam, and where the beam size at the interaction point and the bunch length
do not change during the store. The luminosity can be written as

L =
f0BN2

4πσ∗2
· H. (2)

Here, σ∗ is the transverse beam size (considered to be round) at the interaction point, f0 is the
revolution frequency, and H is a form factor taking into account crossing angles, “hour glass ”
effects, and so on. Furthermore, suppose the rate at which the particles in each beam leave the
accelerator is given solely by the particle interaction rate, namely,

BṄ = −L Σ n. (3)

Inserting Eq. 2 into Eq. 3 and integrating leads to

L(t) =
L0[

1 +
(

nL0Σ
BN0

)
t
]2

where L0 is the initial luminosity at time t = 0.

The integrated luminosity from the beginning of the store until time t = T is then

I ≡
∫ T

0
L(t)dt =

L0T

1 + L0T (nΣ/BN0)
= I0 ·

L0T/I0

1 + L0T/I0
(4)

where
I0 ≡

BN0

nΣ
.

Thus, assuming the store ends intentionally at time T >> I0/L0, I0 would be the asymptotic
integrated luminosity of that store.

As an illustration, suppose we have 36 bunches in each beam (as in the Tevatron), B · N0 =
250 × 1010 particles in each beam (typical number of antiprotons in today’s Tevatron operation),
and use an inelastic cross section of 60 mb. Then, if left to collide “long enough,” such a store
would produce I0 = 21 pb−1 of integrated luminosity in each of two detectors. Of course, the time
it would take to get to a fraction f of this value would be

Tf =
I0

L0

f

1− f
. (5)

To reach 85% of I0 in our example above, starting with an initial luminosity of 1032 cm−2sec−1 =
0.36 pb−1/hr, say, the store would need to last about two weeks. To reach 95% of I0 would take
about a month and a half.
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1.2 Unequal bunch intensities

Of course the proton beam in the Tevatron is more intense than the antiproton beam, by a factor of
3-4. Thus, the initial luminosity will be that much higher, and the time to integrate proportionately
less. To see this more rigorously, let the population of antiprotons per bunch be N2 and that of the
protons N1 > N2, so that the luminosity is

L =
f0BN1N2

4πσ∗2
· H. (6)

Assuming a one-to-one correspondence in the rate at which protons and antiprotons are consumed
(i.e. particles are only lost due to collisions), we define N2(t) = N(t), N1(t) = N(t) + ∆N , where,
∆N = N0

1 −N0
2 , and

BṄ = −L Σ n.

Here, N0
1 and N0

2 are the initial bunch intensities of each species at the beginning of the store. As
before, substituting Eq. 6 along with the definitions of N1(t) and N2(t) into the above differential
equation and integrating, we get

N(t) =
N0

2 ∆N

N0
1 e∆Nkt −N0

2

(7)

where k ≡ nL0Σ/BN0
1 N0

2 = nf0HΣ/4πσ∗2. Thus, the luminosity evolves with time according to

L(t) = L0
∆N2e∆Nkt(

N0
1 e∆Nkt −N0

2

)2
which at large t can be written as

L(t) ∼ L0

(
1− N0

2

N0
1

)2

e−(1−N0
2 /N0

1 )L0t/I0

with I0 being redefined as BN0
2 /nΣ. The integrated luminosity, over a time period T , is

I ≡
∫ T

0
L(t)dt =

BN0
2

nΣ
·

 e∆NkT − 1

e∆NkT − N0
2

N0
1

 =⇒ I0, as t →∞. (8)

As one should expect, the resulting asymptotic integrated luminosity is similar to our last result,
but here the total number of particles used is that of the less intense beam. (Once the less intense
beam is depleted, no more luminosity!)

The time to integrate to a fraction f of the limiting value I0 can also be straightforwardly
dervied to be

Tf =
I0/L0

(1−N0
2 /N0

1 )
ln

(
1− fN0

2 /N0
1

1− f

)
,

at which time the luminosity would be reduced by a factor of

L(Tf )/L0 = (1− f)(1− fN0
2 /N0

1 ).

Take N0
1 = 2.5 × 1011 for the proton beam, and N0

2 = 7 × 1010 for the antiproton beam. We’ll
use H = 0.6, f0 = 47.7 kHz, and σ∗ = 25 µm as typical operational parameters for the Tevatron.

3



0 10 20 30 40 50

0
50

10
0

15
0

20
0

25
0

time(hr)

Lu
m

in
os

ity
 (

/m
ic

ro
ba

rn
/s

ec
)

0 10 20 30 40 50

0
5

10
15

20

time(hr)

In
te

gr
at

ed
 L

um
in

os
ity

 (
/p

b)

Figure 1: Instantaneous (left) and integrated (right) luminosity vs. time through a “perfect” store,
using parameters above. Here, the number of particles in one beam is ∼30% that of the other
beam.

Suppose an average store lasts long enough to yield 85% of the maximum I0; note, that the final
luminosity would be roughly 10% of the initial luminosity under these conditions. Then for these
parameters,

L0 ≈ 250× 1030/cm2/sec = 250 µb−1/sec = 0.9 pb−1/hr,
Tf ≈ 53 hr,
I0 ≈ 21 pb−1/store,

If = I0.85 ≈ 18 pb−1/store,

Plots of instantaneous and integrated luminosity for a single store under these conditions are
provided in Figure 1. Thus, while these store conditions also begin with a total of 250 × 1010

antiprotons, the larger number of protons allows the luminosity to integrate to 85% of its ideal
value in about two days rather than 2 weeks.
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2 SOME WORDS ABOUT PARTICLE LIFETIME

At the pace depicted in the previous example, one would expect in the Tevatron to integrate about
60/pb in about 3.5 stores per week at each detector. The maximum integrated luminosity in a
week thus far during Tevatron Run II has been about 50/pb, however this was accomplished with
6-7 stores. What is missing in the above analysis is the fact that particles are being lost in the
accelerator by mechanisms other than beam-beam collisions at the interaction points. Detailed
numerical models are often generated to depict when, where, and how particles are lost around the
Tevatron. Typical mechanisms are scattering events (Coulomb and nuclear scattering, for example)
as the beam interacts with the residual gas in the vacuum chamber, noise sources in the power supply
and radio frequency acceleration systems, and so on. While many such mechanisms are subtle and
interesting to accelerator physicists, the general characteristic is that particle oscillation amplitudes
grow due to a collection of diffusion processes, and particles can exit at the “aperture” (physical
or dynamic) of the accelerator. In a typical Tevatron store, by the time the beam conditions have
reached equilibrium and the detectors begin to record data, the aperture is generally determined by
the beam collimation system, which is originally set at about 3 times the rms beam size from the
beam center in both transverse degrees of freedom. The beam, which starts out roughly Gaussian in
transverse dimensions, begins to diffuse due to mechanisms such as those described above, forcing
particles into the collimators. If the beam distribution starts out Gaussian, and if particle oscillation
amplitudes are altered randomly, then eventually the beam distribution will reach an equilibrium
with a maximum emittance which is determined by the aperture. The details of this process can
be complex and nonlinear. For our purposes we will model this as a simple noise source generating
a constant rate of single particle emittance growth.

Let’s use the usual Fermilab definition of normalized 95% emittance for a transverse coordinate,
x, namely ε ≡ 6πγ〈x2〉/β, where γ is the Lorentz factor, and the angle brackets denote averaging
over the distribution of particle displacements x at a location where the amplitude function has
value β. (Rather than expressing emittance as a “phase space area,” we here define it as the
second moment of a distribution; this is what is actually reported by the accelerator controls
system, and thus familiar quantities can be used in our analyses below.) If this degree-of-freedom
is limited by an aperture at a distance a from the beam center, then the equilibrium emittance
will be ε̂ ≈ 0.92πγa2/β. Next, let’s say that in the absence of an aperture, the beam emittance
grows at a rate of ε̇ = (6πγ/β) · d〈x2〉/dt. Then the asymptotic lifetime due to diffusion will be
τ = 2a2/(λ2

1d〈x2〉/dt) ≈ 2ε̂/ε̇, where λ1 is the first zero of the Bessel function J0(x).[1] For example,
typical emittance growth rates measured in the Tevatron are on the scale of ε̇ ≈ 1π mm-mrad/hr. If
the equilibrium maximum emittance were 12π mm-mrad, then the particle lifetime due to diffusion
would be about 24 hours. Figure 2 shows the development of the beam intensity over time for
these values of ε̂ and ε̇, when the aperture is at a distance of about 3 times the initial rms beam
size. The equilibrium lifetime is acquired almost immediately. In what follows we will assume that
a diffusion process (or processes) in conjunction with luminosity contribute to the rate of particle
loss in the accelerator, and hence the evolution of beam intensity and luminosity over time can be
treated in a straightforward analytical fashion as we see in the next section.1

1Recently, measures have been taken which reduce the effects of beam-beam interactions in the Tevatron. In
the presence of beam-beam, the lifetime can often be correlated with luminosity; nowadays, this correlation is much
reduced, making our analysis more applicable than before.
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Figure 2: Example of the development of beam intensity over time, due to diffusion. The distance
to the limiting aperture from the beam center is initially 3 times the rms beam size, assumed
Gaussian at t = 0. The dotted curve is for exponential decay with lifetime τ = 24 hr.

3 DIFFERENTIAL EQUATIONS FOR BUNCH INTENSITES

Our new simplified model will assert that the two beams are round at collision, with identical
equilibrium emittances (or, if different emittances, we will assume a single “effective” emittance,
ε =

√
ε1ε2), and that the diffusion rate of each of the two beams generates an effective emittance

growth rate, ε̇, which is common to both beams. Akin to Eq. 3, the equations for the bunch
population for each of the two beam species will be

Ṅ1 = −L · Σ · n/B − 1
τ
N1 = −kN1N2 −

1
τ
N1 (9)

Ṅ2 = −L · Σ · n/B − 1
τ
N2 = −kN1N2 −

1
τ
N2 (10)

where, again, k = L0Σn/(BN0
1 N0

2 ) = L0/(I0N
0
1 ). Subtracting the two equations and integrating,

we find that
N1(t)−N2(t) = (N0

1 −N0
2 )e−t/τ (11)

which says that if we solve for either N1(t) or N2(t) we can find the other by subtracting or adding
the right-hand exponential function in the above equation to our answer. So, we let N(t) ≡ N2(t)
and find that

Ṅ = −k(N + ∆Ne−t/τ ) ·N − 1
τ
N,

or,

Ṅ +
(

1
τ

+ k∆Ne−t/τ
)

N + kN2 = 0. (12)
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This nonlinear differential equation can be turned into a linear first-order differential equation by
setting Z = 1/N ,

Ż −
(

1
τ

+ k∆Ne−t/τ
)

Z − k = 0, (13)

and standard methods can therefore be used for its solution. The final result for N(t) in terms of
initial conditions is

N(t) = N2(t) = N0
2

∆N e−t/τ

N0
1 e(1−e−t/τ )∆Nkτ −N0

2

. (14)

This rather formidable result (especially the exponential of the exponential of time in the denom-
inator!) is indeed the solution of Eq. 12 and reduces to our result of the previous section in the
limit where τ →∞.

We immediately have our result for N1(t), which when simplified becomes

N1(t) = N0
1

∆N e−t/τ

N0
1 −N0

2 e−(1−e−t/τ )∆Nkτ
,

whereby we may write down the luminosity as a function of time:

L(t) = L0
∆N2e−2t/τe−(1−e−t/τ )∆Nkτ(
N0

1 −N0
2 e−(1−e−t/τ )∆Nkτ

)2 . (15)

As before, this reduces to our previous result when τ → ∞. When τ is left finite but the bunch
intensities become equal, the result is

L(t) −→ L0[
Nkτ − (1 + Nkτ)et/τ

]2 as N0
1 → N0

2 = N.

Finally, we can obtain an expression for the integrated luminosity during a store by integrating
Eq. 15 to get

I(t) = I0

[
1− (N0

1 −N0
2 )e−t/τ

N0
1 e(1−e−t/τ )∆Nkτ −N0

2

− I0

L0τ

N0
1

N0
2

ln

(
N0

1 −N0
2 e−(1−e−t/τ )∆Nkτ

N0
1 −N0

2

)]
(16)

which miraculously reduces to our previous result in the event that τ →∞. Note also that for all
t > 0, even as t → ∞, I(t) < I0 — the second and third terms in Eq. 16 are both negative. That
is, a store will never integrate to I0 since particles are being lost due to other mechanisms besides
collisions at the interaction points.

For completeness, we can also write down the expression for integrated luminosity under the
limiting case were N0

1 approaches N0
2 = N :

I(t) −→ I0

{
1− 1

(1 + Nkτ)et/τ −Nkτ
− I0

L0τ
ln
[
1 + Nkτ(1− e−t/τ )

]}
as N0

1 → N0
2 = N.

Plots of luminosity and integrated luminosity during stores for various values of τ are shown
in Figure 3. In this figure, we use the same parameters as used in the numerical example at the
end of Section 1. We see that a non-zero emittance growth rate (i.e. particle loss mechanisms),
thus finite τ , reduces the integrated luminosity per store but allows for more stores per week. So
long as the antiproton production can keep pace, the total integrated luminosity per week can still
be close to the ideal case explored in Section 1.
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Figure 3: Instantaneous (left) and integrated (right) luminosity vs. time for stores with values of
τ = 10 hr, 25 hr, 50 hr and τ = ∞, using same parameter values as in Figure 1. Note that for this
set of parameters, indicative of recent Tevatron performance, I0/L0 ∼ 22 hr.

4 APPLICATION TO PRESENT OPERATION

To look at how well, in an overall sense, our analytical luminosity model works we look at typical
average parameters for the Tevatron Run II operation. There have been a few weeks recently during
which all stores for the week were ended intentionally. (Often times, stores are ended prematurely
due to failures, lightening storms, etc.) For example, take the week of 30 December 2006 through
7 January 2007, which delivered about 45/pb of integrated luminosity through six stores. During
that week, the average initial luminosity was 234/µb/sec and the average store length was about
25 hours. The average delivered luminosity to each of the two detectors was about 7.5/pb. The
average number of antiprotons available for each store was 340× 1010, from which 324× 1010 were
sent toward the Tevatron, and 260×1010 arrived at collision conditions; this yields an average value
for N0

2 = 72.5×109. The average number of protons per bunch during this time was N0
1 = 231×109.

Average values for other parameters were ε̂ = 12π mm-mrad and H = 0.59 at the beginning of a
store. A value of β∗ = 30 cm with these parameters will give the above quoted initial luminosity,
and is also consistent with operations.

The typical time between stores (“shot set-up time”) was about two hours. To produce the
required 324×1010 antiprotons during the time between the start of neighboring stores, the average
antiproton production rate was about 12×1010/hr. Along with the above information, our analytical
model has one last free parameter, namely the emittance growth rate, ε̇. As mentioned in Section 2
a typical scale for emittance growth rate in the Tevatron is on the order of 1π mm-mrad/hr.
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Adjusting ε̇ to make the integrated luminosity in our model adhere to 7.5/pb per store, the best
value is roughly ε̇ = 0.78π mm-mrad/hr – again, totally consistent with experience. The result
of our analytical model with this set of parameters is plotted in Figure 4 along with the actual
integrated luminosity data logged by the accelerator controls system for this week of January.
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Figure 4: Integrated luminosity for the week 30 December 2006 through 7 January 2007. The large
circles are data, while the red (color) curve is the result of our simple analytical model.

We can also see variations in the particle lifetime in each beam throughout the store. If we
define particle lifetimes as

τ1 ≡
N1(t)

dN1(t)/dt
, τ2 ≡

N2(t)
dN2(t)/dt

,

then we can take our functional forms, differentiate them, and plot lifetimes vs. time through a

9



store. In fact, it is straightforward to see from Equations 9 and 10 that the lifetimes will be

τ1 =
τ

1 + kτN2(t)
and τ2 =

τ

1 + kτN1(t)

The results for our typical stores described above are displayed in Figure 5. The lifetimes start out
shorter, and evolve into longer lifetimes, and their numerical values – on the scale of 15 to 25 hours
– are once again consistent with observations. The higher intensity particle beam typically will
have a larger lifetime, as expected, but both will evolve with time as the luminosity is diminished.
Given enough time (about 100 hours, in our example), both lifetimes will approach the value of τ .
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Figure 5: Instantaneous lifetimes of both species of particles through a store, using the typical
parameters from our example above.
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5 STORE LENGTH OPTIMIZATION

We can quickly examine various features of our analytical model now that a realistic parameter
set has been defined. Figure 6 shows the total antiproton intensity throughout a store along with
the build-up of antiprotons produced during the store as a function of time. We can now begin
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B
*N
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, e
10

Figure 6: Left: N2(t) during a store and accumulation of N2 for the next store. An inefficiency of
delivery of antiprotons to collision conditions is built-in.

to use our model to ask questions about the collider operation and to optimize performance. For
example, At what stack size does it make sense to end the store and begin a new store? As one
might expect, the answer depends upon the antiproton accumulation rate. Suppose we decide to
deliver N0

2 antiprotons to the beginning of a store, and our accumulation rate for antiprotons is R.
If we accumulate fast enough, we always have enough antiprotons ready for the next store. If not,
then the store must last longer yet, as we saw earlier, there may not be much to gain in integrated
luminosity by waiting that long. Thus, there will be an optimal store length for a particular stacking
rate, other parameters held constant.

In Figure 7, the antiproton accumulation rate is varied and the average weekly integrated
luminosity is plotted as a function of initial number of accumulated antiprotons per store. Again,
the scenario of the previous section still holds, where a delivery efficiency – B ·N0

2 at collision over
accumulated antiprotons – of 77% is maintained, etc.. For this figure we assume a store lasts for a
time T such that F · (R · T ) = B ·N0

2 , where F is the delivery efficiency. As can be seen, optimal
initial antiproton intensities – and corresponding store lengths – are evident. A plot of optimized
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Figure 8: Optimized initial bunch intensities N0
2 as a function of average accumulation rate, R.

The “+” symbol represents the conditions of our on-going example.

initial antiproton intensities vs. accumulation rate is depicted in Figure 8. This figure suggests
that if stores could last a bit longer, allowing for higher initial antiproton intensities, then further
integrated luminosity could be generated per store. However, looking back at Figure 7, we note
that the maximum is rather broad, and the gain in integrated luminosity per week in going from
accumulations of 340× 1010 to over 570× 1010 at our present accumulation rate would amount to
only a 6% increase in delivered luminosity.

We can also examine the role of the emittance growth rate in our model on integrated lumi-
nosity. Let’s stick with our average accumulation rate of 12× 1010 antiprotons per hour, and vary
the emittance growth rate in our example. Figure 9 shows curves of weekly integrated luminosity
using the same parameters as in Figure 7. Here, however, we hold the average accumulation rate
at 12×1010 antiprotons per hour, the effective emittance at 12π mm-mrad, and vary the emittance
growth rate between 1.5 and 0.25π mm-mrad/hr, corresponding to τ between 16 and 96 hours. We
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Figure 9: Curves of weekly integrated luminosity vs. number of antiprotons accumulated during
a store for given values of effective emittance growth rate, ε̇. The “+” symbol represents the
conditions of our on-going example from Section 4. The average antiproton accumulation rate
R = 12× 1010/hr.
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see that for our nominal accumulation rate, if the emittance growth rate were diminished by 33%,
for example, then one would contemplate going to higher initial antiproton intensities – 600×1010,
say – and the integrated luminosity could increase by about 33%.

6 Concluding Remarks

We have seen that the essential features of a Tevatron store can be described quite well in terms
of the conditions setting the initial luminosity, and by the introduction of a particle lifetime, for
example generated by an emittance growth rate due to diffusion processes. Several details of actual
operation have been left out. For example, the hourglass form factor in the luminosity equation
actually develops with time as the bunch length changes during a store (also due to noise sources,
as well as due to intrabeam scattering). Also, the beams do influence each other due to beam-
beam interactions, and so the emittance growth rate, or τ , may depend upon the instantaneous
luminosity, for example, and so forth. It is interesting to note, however, that the gross features of
Tevatron stores and the integrated luminosity per week can be nicely demonstrated with a simple
analytical model which can be used to help sort out important parametric choices to be made
during routine operation.

References

[1] Edwards, D. A., and Syphers, M. J., An Introduction to the Physics of Particle Accelerators,
John Wiley, and Sons, New York (1993). Also, see the discussion in M. J. Syphers, “Some
Notes on Tevatron Beam Lifetimes and Longitudinal Emittance,” Fermilab Internal Report,
Beams-doc-1478 (2004).

15


